Documentation / QUAD Workflow / Sample Environment

QUAD Sample Environment: GlobalRetail Inc.

A Realistic Enterprise Environment for QUAD Use Cases

Part of QUADβ„’ (Quick Unified Agentic Development) Methodology Β© 2025 Suman Addanke / A2 Vibe Creators LLC


Table of Contents

  • Company Overview
  • Technology Landscape
  • Team Structure
  • Pain Points (Pre-QUAD)
  • Systems Inventory
  • Use Case Scenarios

  • Company Overview

    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
    β”‚                      GLOBALRETAIL INC.                               β”‚
    β”‚                   "Retail for the Modern World"                       β”‚
    β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
    β”‚                                                                      β”‚
    β”‚  Industry:        Retail / E-Commerce                                β”‚
    β”‚  Founded:         1998 (started as brick & mortar)                   β”‚
    β”‚  Employees:       8,500 globally                                     β”‚
    β”‚  IT Staff:        ~450 (across all locations)                        β”‚
    β”‚  Revenue:         $2.8B annually                                     β”‚
    β”‚  Locations:       320 physical stores + e-commerce                   β”‚
    β”‚                                                                      β”‚
    β”‚  Digital Transformation Status: "In Progress" (since 2019)          β”‚
    β”‚  Technical Debt Level: HIGH (legacy systems from 2005-2015)         β”‚
    β”‚                                                                      β”‚
    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

    Company History

    YearEvent 1998Founded as regional retail chain 2005First POS system (still running!) 2008Launched e-commerce website (Java/Oracle) 2012Built data warehouse on Vertica 2015Mobile app v1 (Objective-C, deprecated) 2018Started AWS migration (partial) 2020COVID forced rapid e-commerce expansion 2022New CTO hired, "modernization initiative" 2024Still struggling with legacy + modern hybrid 2025Adopting QUAD methodology

    Technology Landscape

    The "Zoo" of Technologies

    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
    β”‚                    GLOBALRETAIL TECH STACK                           β”‚
    β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
    β”‚                                                                      β”‚
    β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”β”‚
    β”‚  β”‚                      MODERN (2020+)                              β”‚β”‚
    β”‚  β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”        β”‚β”‚
    β”‚  β”‚  β”‚  React   β”‚  β”‚  Node.js β”‚  β”‚ Postgres β”‚  β”‚   AWS    β”‚        β”‚β”‚
    β”‚  β”‚  β”‚  Next.js β”‚  β”‚  Express β”‚  β”‚  (RDS)   β”‚  β”‚  Lambda  β”‚        β”‚β”‚
    β”‚  β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜        β”‚β”‚
    β”‚  β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”        β”‚β”‚
    β”‚  β”‚  β”‚ Kotlin   β”‚  β”‚  Swift   β”‚  β”‚  Redis   β”‚  β”‚ Elastic  β”‚        β”‚β”‚
    β”‚  β”‚  β”‚ Android  β”‚  β”‚   iOS    β”‚  β”‚  Cache   β”‚  β”‚  Search  β”‚        β”‚β”‚
    β”‚  β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜        β”‚β”‚
    β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜β”‚
    β”‚                                                                      β”‚
    β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”β”‚
    β”‚  β”‚                      LEGACY (2005-2015)                          β”‚β”‚
    β”‚  β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”        β”‚β”‚
    β”‚  β”‚  β”‚  Java 8  β”‚  β”‚  Oracle  β”‚  β”‚ Vertica  β”‚  β”‚  COBOL   β”‚        β”‚β”‚
    β”‚  β”‚  β”‚  Spring  β”‚  β”‚  11g R2  β”‚  β”‚  DW      β”‚  β”‚  Batch   β”‚        β”‚β”‚
    β”‚  β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜        β”‚β”‚
    β”‚  β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”        β”‚β”‚
    β”‚  β”‚  β”‚  .NET    β”‚  β”‚  SQL     β”‚  β”‚ IBM MQ   β”‚  β”‚ Windows  β”‚        β”‚β”‚
    β”‚  β”‚  β”‚  4.5     β”‚  β”‚  Server  β”‚  β”‚  Queues  β”‚  β”‚  Server  β”‚        β”‚β”‚
    β”‚  β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜        β”‚β”‚
    β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜β”‚
    β”‚                                                                      β”‚
    β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”β”‚
    β”‚  β”‚                      TOOLS & PLATFORMS                           β”‚β”‚
    β”‚  β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”        β”‚β”‚
    β”‚  β”‚  β”‚ GitHub   β”‚  β”‚Confluenceβ”‚  β”‚  Jira    β”‚  β”‚  Slack   β”‚        β”‚β”‚
    β”‚  β”‚  β”‚ Enterpr. β”‚  β”‚  Server  β”‚  β”‚  Server  β”‚  β”‚ Business β”‚        β”‚β”‚
    β”‚  β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜        β”‚β”‚
    β”‚  β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”        β”‚β”‚
    β”‚  β”‚  β”‚ Jenkins  β”‚  β”‚ MS 365   β”‚  β”‚ Splunk   β”‚  β”‚PagerDuty β”‚        β”‚β”‚
    β”‚  β”‚  β”‚ CI/CD    β”‚  β”‚  Suite   β”‚  β”‚  Logs    β”‚  β”‚  Alerts  β”‚        β”‚β”‚
    β”‚  β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜        β”‚β”‚
    β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜β”‚
    β”‚                                                                      β”‚
    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

    Team Structure

    IT Organization

    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
    β”‚                    IT ORGANIZATION (~450 people)                     β”‚
    β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
    β”‚                                                                      β”‚
    β”‚                         CTO (Maria Chen)                             β”‚
    β”‚                              β”‚                                       β”‚
    β”‚         β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”                 β”‚
    β”‚         β”‚                    β”‚                    β”‚                  β”‚
    β”‚         β–Ό                    β–Ό                    β–Ό                  β”‚
    β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”     β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”     β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”            β”‚
    β”‚  β”‚ VP Digital  β”‚     β”‚ VP Core     β”‚     β”‚ VP Infra    β”‚            β”‚
    β”‚  β”‚ (Modern)    β”‚     β”‚ (Legacy)    β”‚     β”‚ (Platform)  β”‚            β”‚
    β”‚  β”‚ ~150 people β”‚     β”‚ ~180 people β”‚     β”‚ ~120 people β”‚            β”‚
    β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜     β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜     β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜            β”‚
    β”‚         β”‚                    β”‚                    β”‚                  β”‚
    β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”     β”Œβ”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”     β”Œβ”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”            β”‚
    β”‚  β”‚             β”‚     β”‚             β”‚     β”‚             β”‚             β”‚
    β”‚  β–Ό             β–Ό     β–Ό             β–Ό     β–Ό             β–Ό             β”‚
    β”‚ Web App    Mobile   E-Commerce  Batch   Cloud      On-Prem          β”‚
    β”‚ Team       Team     Team        Team    Team       Team             β”‚
    β”‚ (React)    (iOS/    (Java/      (COBOL  (AWS)      (Data            β”‚
    β”‚            Android) Oracle)     /SQL)              Center)          β”‚
    β”‚                                                                      β”‚
    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

    Key Stakeholders

    NameRoleFocus AreaChallenge Maria ChenCTOOverall strategyBalancing modernization vs stability David ParkVP DigitalModern stackTeam wants to move fast, blocked by legacy Susan MillerVP CoreLegacy systems"If it ain't broke..." but it's breaking James WilsonVP InfraPlatformManaging hybrid cloud/on-prem Priya SharmaDir. E-CommerceOnline sales$800M revenue depends on aging Java app Mike JohnsonDir. AnalyticsData/BIVertica is slow, can't scale for AI/ML Lisa BrownDir. QAQualityTesting legacy is nightmare, no automation

    Pain Points (Pre-QUAD)

    The Real Problems

    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
    β”‚                    GLOBALRETAIL PAIN POINTS                          β”‚
    β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
    β”‚                                                                      β”‚
    β”‚  PROBLEM 1: REQUIREMENT CHAOS                                        β”‚
    β”‚  ════════════════════════════                                        β”‚
    β”‚  β€’ Business writes vague requirements in Word docs                   β”‚
    β”‚  β€’ Developers interpret differently                                  β”‚
    β”‚  β€’ 3-4 rounds of "that's not what I meant"                          β”‚
    β”‚  β€’ Average story takes 2.5 weeks (should take 3 days)               β”‚
    β”‚                                                                      β”‚
    β”‚  PROBLEM 2: LEGACY KNOWLEDGE SILOS                                   β”‚
    β”‚  ════════════════════════════════                                    β”‚
    β”‚  β€’ Only 2 people understand the COBOL batch jobs                    β”‚
    β”‚  β€’ Oracle stored procedures: 500+ with no documentation             β”‚
    β”‚  β€’ "Ask Bob" is the documentation strategy                          β”‚
    β”‚  β€’ Bob is retiring in 6 months                                       β”‚
    β”‚                                                                      β”‚
    β”‚  PROBLEM 3: INTEGRATION NIGHTMARES                                   β”‚
    β”‚  ═══════════════════════════════                                     β”‚
    β”‚  β€’ Modern React app β†’ Legacy Java β†’ Oracle β†’ Vertica                β”‚
    β”‚  β€’ 47 different integration patterns                                 β”‚
    β”‚  β€’ One change breaks 3 other systems                                 β”‚
    β”‚  β€’ No one knows the full data flow                                   β”‚
    β”‚                                                                      β”‚
    β”‚  PROBLEM 4: DEPLOYMENT FEAR                                          β”‚
    β”‚  ══════════════════════════                                          β”‚
    β”‚  β€’ "Deploy on Thursday" β†’ "Pray on Friday"                          β”‚
    β”‚  β€’ Last 5 releases had rollbacks                                     β”‚
    β”‚  β€’ No automated testing for legacy                                   β”‚
    β”‚  β€’ Manual deployments take 4 hours                                   β”‚
    β”‚                                                                      β”‚
    β”‚  PROBLEM 5: DATA QUALITY                                             β”‚
    β”‚  ════════════════════════                                            β”‚
    β”‚  β€’ Customer data in 7 different systems                              β”‚
    β”‚  β€’ No single source of truth                                         β”‚
    β”‚  β€’ Analytics reports don't match                                     β”‚
    β”‚  β€’ GDPR compliance is a nightmare                                    β”‚
    β”‚                                                                      β”‚
    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

    By the Numbers

    MetricCurrentIndustry AvgTarget Deployment frequency2/month10/month20/month Lead time (idea→prod)45 days14 days7 days Change failure rate28%15%<5% Mean time to recover4 hours1 hour15 min Story completion accuracy60%85%95% Documentation coverage15%60%80%

    Systems Inventory

    Complete System Catalog

    #### 1. E-Commerce Platform (Legacy Core)
    system_id: ECOM-001
    name: "RetailCore E-Commerce"
    status: CRITICAL
    age: 17 years
    owner: Priya Sharma (Dir. E-Commerce)
    

    technology: language: Java 8 framework: Spring 4.3 (EOL!) database: Oracle 11g R2 app_server: WebLogic 12c caching: Coherence

    infrastructure: location: On-premise data center servers: 12 physical + 8 VM load_balancer: F5 BIG-IP storage: NetApp SAN

    integrations: inbound: - POS systems (320 stores) - Mobile app - Partner APIs outbound: - Payment gateway (Stripe) - Shipping (FedEx, UPS) - Inventory (SAP) - Data warehouse (Vertica)

    pain_points: - "Spring 4.3 is end-of-life, security patches not available" - "Oracle 11g no longer supported by vendor" - "No unit tests, 0% code coverage" - "Only 3 developers understand the codebase" - "Deployment takes 4 hours, requires 8 people"

    revenue_at_risk: "$800M annually" downtime_cost: "$50K per hour"

    #### 2. Data Warehouse (Vertica)
    system_id: DW-001
    name: "Analytics Data Warehouse"
    status: CRITICAL
    age: 13 years
    owner: Mike Johnson (Dir. Analytics)
    

    technology: database: Vertica 9.2 (2 versions behind) etl: Informatica PowerCenter 10.1 reporting: Tableau Server scheduler: Control-M

    infrastructure: location: On-premise cluster: 8-node Vertica cluster storage: 45 TB (growing 2TB/month)

    data_sources: - E-Commerce (ECOM-001) - POS transactions - Customer master - Inventory - Marketing campaigns

    pain_points: - "Query performance degraded 40% over 2 years" - "ETL jobs take 8 hours (used to be 2 hours)" - "Cannot handle real-time analytics" - "Vertica license costs $500K/year" - "No one remembers why 200+ ETL jobs exist"

    business_impact: - "Daily sales report arrives at 11 AM (too late)" - "Cannot do ML/AI on this platform" - "Executives frustrated with stale data"

    #### 3. Batch Processing (COBOL)
    system_id: BATCH-001
    name: "Overnight Batch System"
    status: CRITICAL
    age: 20 years
    owner: Susan Miller (VP Core)
    

    technology: language: COBOL 85 scheduler: CA Workload Automation database: DB2 on z/OS file_transfer: Connect:Direct

    batch_jobs: total: 847 jobs critical: 127 jobs documented: 43 jobs (5%!) average_runtime: 6 hours

    key_processes: - GL01: General ledger posting - INV01: Inventory reconciliation - PAY01: Payroll processing - RPT01: Regulatory reporting - CUS01: Customer data sync

    pain_points: - "Only Bob and Mary understand the code" - "Bob retires in 6 months" - "Mary is looking for new job" - "No documentation for 95% of jobs" - "One job failure causes 8-hour cascade" - "Cannot find COBOL developers"

    risk_level: EXTREME

    #### 4. Mobile Applications
    system_id: MOB-001
    name: "GlobalRetail Mobile Apps"
    status: NEEDS_MODERNIZATION
    age: 3 years (rewrite from 2015 version)
    owner: Mobile Team (under VP Digital)
    

    technology: ios: language: Swift 5 min_version: iOS 14 architecture: MVVM ci_cd: Fastlane + GitHub Actions android: language: Kotlin min_version: Android 8 (API 26) architecture: MVVM + Hilt ci_cd: Gradle + GitHub Actions

    integrations: - E-Commerce API (Java/Oracle) - Push notifications (Firebase) - Analytics (Mixpanel) - Payments (Apple Pay, Google Pay, Stripe)

    pain_points: - "Depends on legacy Java API - often slow" - "10% of features blocked by backend limitations" - "No staging environment matches prod" - "App store reviews: 3.2 stars (complaints about bugs)"

    #### 5. Modern Web App
    system_id: WEB-001
    name: "RetailWeb (New)"
    status: ACTIVE_DEVELOPMENT
    age: 2 years
    owner: Web App Team (under VP Digital)
    

    technology: frontend: React 18, Next.js 14 backend: Node.js 20, Express database: PostgreSQL 15 (AWS RDS) cache: Redis (ElastiCache) search: Elasticsearch hosting: AWS (ECS Fargate)

    integrations: - Legacy E-Commerce API (read-only) - New microservices (Node.js) - Mobile apps (shared API) - Analytics (Segment β†’ various)

    pain_points: - "Cannot write to legacy Oracle directly" - "Data sync delays (15-min lag)" - "Feature parity with legacy still at 70%" - "Two codebases to maintain"

    #### 6. Corporate Tools
    system_id: TOOLS-001
    name: "Corporate Tool Stack"
    status: ACTIVE
    owner: IT Operations
    

    tools: source_control: name: GitHub Enterprise users: 400+ repos: 350+

    documentation: name: Confluence Server version: 7.19 spaces: 85 pages: 12,000+

    project_management: name: Jira Server version: 9.4 projects: 45 issues: 150,000+

    communication: name: Slack Business+ channels: 500+ users: 8,500

    email: name: Microsoft 365 users: 8,500

    ci_cd: name: Jenkins version: 2.387 jobs: 200+ pipelines: 45

    monitoring: name: Splunk Enterprise daily_ingestion: 500 GB

    alerting: name: PagerDuty services: 75 on_call_schedules: 12

    cloud: primary: AWS (us-east-1) services: - EC2, ECS, Lambda - RDS, ElastiCache, S3 - CloudFront, Route 53 - CloudWatch, X-Ray monthly_spend: ~$180K


    Use Case Scenarios

    Ready-to-Use QUAD Scenarios

    These scenarios can be used to demonstrate QUAD methodology:


    Scenario 1: Modernize the COBOL Batch System

    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
    β”‚  SCENARIO: "Bob is Retiring" - COBOL Knowledge Transfer              β”‚
    β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
    β”‚                                                                      β”‚
    β”‚  SITUATION:                                                          β”‚
    β”‚  β€’ Bob (senior COBOL developer) retires in 6 months                 β”‚
    β”‚  β€’ 847 batch jobs, only 43 documented                                β”‚
    β”‚  β€’ No one else understands the code                                  β”‚
    β”‚  β€’ Business cannot survive without these jobs                        β”‚
    β”‚                                                                      β”‚
    β”‚  QUAD APPROACH:                                                      β”‚
    β”‚                                                                      β”‚
    β”‚  Phase 1: Document (Story Agent)                                     β”‚
    β”‚  β”œβ”€β”€ Scan all 847 COBOL programs                                    β”‚
    β”‚  β”œβ”€β”€ Generate documentation using AI                                 β”‚
    β”‚  β”œβ”€β”€ Create dependency maps                                          β”‚
    β”‚  └── Identify critical paths                                         β”‚
    β”‚                                                                      β”‚
    β”‚  Phase 2: Prioritize (Estimation Agent)                              β”‚
    β”‚  β”œβ”€β”€ Rank jobs by business criticality                               β”‚
    β”‚  β”œβ”€β”€ Estimate modernization effort per job                           β”‚
    β”‚  └── Create modernization roadmap                                    β”‚
    β”‚                                                                      β”‚
    β”‚  Phase 3: Modernize (Dev Agents)                                     β”‚
    β”‚  β”œβ”€β”€ Convert critical jobs to Java/Python                            β”‚
    β”‚  β”œβ”€β”€ Run in parallel with COBOL                                      β”‚
    β”‚  └── Gradually retire COBOL                                          β”‚
    β”‚                                                                      β”‚
    β”‚  LABELS:                                                             β”‚
    β”‚  priority/P0, type/TECH_DEBT, circle/2-DEV, platform/BATCH           β”‚
    β”‚  complexity/ICOSAHEDRON (20 pts - Epic level)                        β”‚
    β”‚                                                                      β”‚
    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

    Scenario 2: E-Commerce Platform Upgrade

    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
    β”‚  SCENARIO: "Spring 4.3 EOL" - Security Vulnerability                 β”‚
    β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
    β”‚                                                                      β”‚
    β”‚  SITUATION:                                                          β”‚
    β”‚  β€’ Spring 4.3 reached end-of-life                                    β”‚
    β”‚  β€’ Security team found 12 CVEs (3 critical)                          β”‚
    β”‚  β€’ Must upgrade to Spring Boot 3.2                                   β”‚
    β”‚  β€’ $800M revenue runs on this system                                 β”‚
    β”‚                                                                      β”‚
    β”‚  QUAD APPROACH:                                                      β”‚
    β”‚                                                                      β”‚
    β”‚  Phase 1: Analysis (Code Agent + Security Agent)                     β”‚
    β”‚  β”œβ”€β”€ Scan entire Java codebase (500K lines)                          β”‚
    β”‚  β”œβ”€β”€ Identify all Spring dependencies                                β”‚
    β”‚  β”œβ”€β”€ Map breaking changes from 4.3 β†’ 6.0 β†’ Boot 3.2                 β”‚
    β”‚  └── Generate upgrade stories automatically                          β”‚
    β”‚                                                                      β”‚
    β”‚  Phase 2: Test Strategy (QA Agent)                                   β”‚
    β”‚  β”œβ”€β”€ Generate regression test cases                                  β”‚
    β”‚  β”œβ”€β”€ Create API contract tests                                       β”‚
    β”‚  └── Performance benchmarks                                          β”‚
    β”‚                                                                      β”‚
    β”‚  Phase 3: Incremental Upgrade (Dev Agents)                           β”‚
    β”‚  β”œβ”€β”€ Module-by-module upgrade                                        β”‚
    β”‚  β”œβ”€β”€ Feature flag for rollback                                       β”‚
    β”‚  └── Zero-downtime deployment                                        β”‚
    β”‚                                                                      β”‚
    β”‚  LABELS:                                                             β”‚
    β”‚  priority/P0, type/SECURITY, type/TECH_DEBT, circle/2-DEV            β”‚
    β”‚  platform/API, complexity/DODECAHEDRON (12 pts)                      β”‚
    β”‚                                                                      β”‚
    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

    Scenario 3: Vertica to Snowflake Migration

    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
    β”‚  SCENARIO: "Analytics Modernization" - Data Platform Migration       β”‚
    β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
    β”‚                                                                      β”‚
    β”‚  SITUATION:                                                          β”‚
    β”‚  β€’ Vertica license renewal: $500K/year                               β”‚
    β”‚  β€’ Performance degraded 40%                                          β”‚
    β”‚  β€’ Cannot support ML/AI workloads                                    β”‚
    β”‚  β€’ 200+ ETL jobs (many undocumented)                                 β”‚
    β”‚  β€’ Migrate to Snowflake on AWS                                       β”‚
    β”‚                                                                      β”‚
    β”‚  QUAD APPROACH:                                                      β”‚
    β”‚                                                                      β”‚
    β”‚  Phase 1: Discovery (Data Agent + Story Agent)                       β”‚
    β”‚  β”œβ”€β”€ Catalog all Vertica tables (1,200+)                            β”‚
    β”‚  β”œβ”€β”€ Map ETL job dependencies                                        β”‚
    β”‚  β”œβ”€β”€ Identify unused tables/jobs                                     β”‚
    β”‚  └── Generate migration stories                                      β”‚
    β”‚                                                                      β”‚
    β”‚  Phase 2: Schema Conversion (DB Agent)                               β”‚
    β”‚  β”œβ”€β”€ Convert Vertica DDL β†’ Snowflake                                β”‚
    β”‚  β”œβ”€β”€ Optimize for Snowflake architecture                             β”‚
    β”‚  └── Data type mapping                                               β”‚
    β”‚                                                                      β”‚
    β”‚  Phase 3: ETL Modernization (Dev Agent)                              β”‚
    β”‚  β”œβ”€β”€ Informatica β†’ dbt + Airflow                                    β”‚
    β”‚  β”œβ”€β”€ Incremental migration                                           β”‚
    β”‚  └── Parallel running for validation                                 β”‚
    β”‚                                                                      β”‚
    β”‚  LABELS:                                                             β”‚
    β”‚  priority/P1, type/INFRA, type/TECH_DEBT, circle/4-INFRA             β”‚
    β”‚  platform/BATCH, complexity/ICOSAHEDRON (20 pts)                     β”‚
    β”‚                                                                      β”‚
    β”‚  ROI: $500K/year license + $200K/year compute savings                β”‚
    β”‚                                                                      β”‚
    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

    Scenario 4: Mobile App Performance Fix

    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
    β”‚  SCENARIO: "3.2 Star Reviews" - Mobile App Crisis                    β”‚
    β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
    β”‚                                                                      β”‚
    β”‚  SITUATION:                                                          β”‚
    β”‚  β€’ App Store rating dropped from 4.5 to 3.2                          β”‚
    β”‚  β€’ Customer complaints: "App is slow", "Crashes on checkout"         β”‚
    β”‚  β€’ Root cause: Legacy Java API response time 3-8 seconds             β”‚
    β”‚  β€’ Mobile team blocked, cannot fix backend                           β”‚
    β”‚                                                                      β”‚
    β”‚  QUAD APPROACH:                                                      β”‚
    β”‚                                                                      β”‚
    β”‚  Phase 1: Root Cause Analysis (Code Agent + Perf Agent)              β”‚
    β”‚  β”œβ”€β”€ Profile Java API endpoints                                      β”‚
    β”‚  β”œβ”€β”€ Identify N+1 query issues                                       β”‚
    β”‚  β”œβ”€β”€ Map slow Oracle stored procedures                               β”‚
    β”‚  └── Generate optimization stories                                   β”‚
    β”‚                                                                      β”‚
    β”‚  Phase 2: Quick Wins (Dev Agent API)                                 β”‚
    β”‚  β”œβ”€β”€ Add Redis caching layer                                         β”‚
    β”‚  β”œβ”€β”€ Optimize top 10 slowest queries                                 β”‚
    β”‚  └── Implement pagination for large lists                            β”‚
    β”‚                                                                      β”‚
    β”‚  Phase 3: Mobile Fixes (Dev Agent iOS + Android)                     β”‚
    β”‚  β”œβ”€β”€ Add offline mode                                                β”‚
    β”‚  β”œβ”€β”€ Implement optimistic UI                                         β”‚
    β”‚  └── Better error handling                                           β”‚
    β”‚                                                                      β”‚
    β”‚  LABELS:                                                             β”‚
    β”‚  priority/P0, type/BUG, circle/2-DEV                                 β”‚
    β”‚  platform/API, platform/IOS, platform/ANDROID                        β”‚
    β”‚  complexity/OCTAHEDRON (8 pts)                                       β”‚
    β”‚                                                                      β”‚
    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

    Scenario 5: New Feature - Buy Online Pickup In-Store (BOPIS)

    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
    β”‚  SCENARIO: "BOPIS Feature" - Cross-System New Feature                β”‚
    β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
    β”‚                                                                      β”‚
    β”‚  SITUATION:                                                          β”‚
    β”‚  β€’ Business wants BOPIS (Buy Online, Pickup In Store)                β”‚
    β”‚  β€’ Requires changes to: Web, Mobile, POS, Inventory, Notifications   β”‚
    β”‚  β€’ Must integrate with 320 store systems                             β”‚
    β”‚  β€’ Launch in 3 months for holiday season                             β”‚
    β”‚                                                                      β”‚
    β”‚  QUAD APPROACH:                                                      β”‚
    β”‚                                                                      β”‚
    β”‚  Phase 1: Requirements (Story Agent)                                 β”‚
    β”‚  β”œβ”€β”€ Expand business requirement                                     β”‚
    β”‚  β”œβ”€β”€ Generate user stories for each platform                         β”‚
    β”‚  β”œβ”€β”€ Identify integration points                                     β”‚
    β”‚  └── Flag risks and dependencies                                     β”‚
    β”‚                                                                      β”‚
    β”‚  Phase 2: Estimation (Pipeline: Estimation)                          β”‚
    β”‚  β”œβ”€β”€ Code Agent: API complexity                                      β”‚
    β”‚  β”œβ”€β”€ DB Agent: Schema changes                                        β”‚
    β”‚  β”œβ”€β”€ Flow Agent: Integration complexity                              β”‚
    β”‚  └── Final estimate: DODECAHEDRON (12 pts) per platform              β”‚
    β”‚                                                                      β”‚
    β”‚  Phase 3: Parallel Development (Pipeline: HYBRID)                    β”‚
    β”‚  β”œβ”€β”€ Stage 1: [API, Database] parallel                               β”‚
    β”‚  β”œβ”€β”€ Stage 2: [Web, iOS, Android] parallel                           β”‚
    β”‚  β”œβ”€β”€ Stage 3: [POS Integration] sequential                           β”‚
    β”‚  └── Stage 4: [QA] all platforms                                     β”‚
    β”‚                                                                      β”‚
    β”‚  LABELS:                                                             β”‚
    β”‚  priority/P1, type/FEATURE, circle/2-DEV                             β”‚
    β”‚  platform/API, platform/WEB, platform/IOS, platform/ANDROID          β”‚
    β”‚  sprint/SPRINT-07, sprint/SPRINT-08, sprint/SPRINT-09                β”‚
    β”‚  complexity/DODECAHEDRON (12 pts)                                    β”‚
    β”‚                                                                      β”‚
    β”‚  GENERATED STORIES: 47 stories across 5 platforms                    β”‚
    β”‚                                                                      β”‚
    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

    Scenario 6: Security Audit Remediation

    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
    β”‚  SCENARIO: "Security Audit Findings" - Compliance Urgent             β”‚
    β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
    β”‚                                                                      β”‚
    β”‚  SITUATION:                                                          β”‚
    β”‚  β€’ External security audit found 47 vulnerabilities                  β”‚
    β”‚  β€’ 8 Critical, 15 High, 24 Medium                                    β”‚
    β”‚  β€’ PCI compliance at risk (handles credit cards)                     β”‚
    β”‚  β€’ Board requires remediation plan in 2 weeks                        β”‚
    β”‚                                                                      β”‚
    β”‚  QUAD APPROACH:                                                      β”‚
    β”‚                                                                      β”‚
    β”‚  Phase 1: Triage (Security Scanner Agent)                            β”‚
    β”‚  β”œβ”€β”€ Scan all 47 findings                                            β”‚
    β”‚  β”œβ”€β”€ Auto-categorize by system                                       β”‚
    β”‚  β”œβ”€β”€ Estimate fix complexity                                         β”‚
    β”‚  └── Generate remediation stories                                    β”‚
    β”‚                                                                      β”‚
    β”‚  Phase 2: Prioritized Backlog                                        β”‚
    β”‚  β”œβ”€β”€ Critical (8): P0, Sprint-Current                                β”‚
    β”‚  β”œβ”€β”€ High (15): P1, Sprint-Current + Sprint-Next                     β”‚
    β”‚  β”œβ”€β”€ Medium (24): P2, Backlog (plan within 90 days)                  β”‚
    β”‚  └── Each story has specific fix instructions                        β”‚
    β”‚                                                                      β”‚
    β”‚  Phase 3: Fix & Verify (Security Pipeline)                           β”‚
    β”‚  β”œβ”€β”€ Dev Agent: Implement fixes                                      β”‚
    β”‚  β”œβ”€β”€ Security Agent: Verify remediation                              β”‚
    β”‚  β”œβ”€β”€ QA Agent: Regression testing                                    β”‚
    β”‚  └── Compliance Agent: Generate audit evidence                       β”‚
    β”‚                                                                      β”‚
    β”‚  LABELS:                                                             β”‚
    β”‚  priority/P0-P2, type/SECURITY, circle/2-DEV + circle/3-QA           β”‚
    β”‚  platform/* (varies by finding)                                      β”‚
    β”‚  complexity/TETRAHEDRON to OCTAHEDRON (varies)                       β”‚
    β”‚                                                                      β”‚
    β”‚  BOARD REPORT: Auto-generated from story status                      β”‚
    β”‚                                                                      β”‚
    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

    Quick Reference

    System Codes

    CodeSystemTechStatus ECOM-001E-CommerceJava 8/OracleCritical, Legacy DW-001Data WarehouseVerticaCritical, Slow BATCH-001Batch JobsCOBOL/DB2Critical, At Risk MOB-001Mobile AppsSwift/KotlinActive, Modern WEB-001Web AppReact/NodeActive, Modern TOOLS-001Corporate ToolsGitHub/Jira/etcActive

    Key Contacts

    RoleNameSystem Focus CTOMaria ChenOverall VP DigitalDavid ParkModern stack VP CoreSusan MillerLegacy VP InfraJames WilsonCloud/On-prem Dir. E-CommercePriya SharmaECOM-001 Dir. AnalyticsMike JohnsonDW-001 Legacy ExpertBob (retiring!)BATCH-001

    Integration Map

    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
    β”‚                    SYSTEM INTEGRATION MAP                           β”‚
    β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
    β”‚                                                                     β”‚
    β”‚   [POS-320 stores]                                                  β”‚
    β”‚         β”‚                                                           β”‚
    β”‚         β–Ό                                                           β”‚
    β”‚   [BATCH-001 COBOL] ──────────────► [DW-001 Vertica]               β”‚
    β”‚         β”‚                                  β”‚                        β”‚
    β”‚         β–Ό                                  β–Ό                        β”‚
    β”‚   [ECOM-001 Java/Oracle] ◄──────── [Tableau Reports]               β”‚
    β”‚         β”‚                                                           β”‚
    β”‚    β”Œβ”€β”€β”€β”€β”΄β”€β”€β”€β”€β”                                                      β”‚
    β”‚    β–Ό         β–Ό                                                      β”‚
    β”‚ [MOB-001] [WEB-001]                                                 β”‚
    β”‚  iOS/And   React                                                    β”‚
    β”‚                                                                     β”‚
    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

    How to Use This Environment

  • Pick a Scenario from the list above
  • Reference System Details when discussing technical approach
  • Use Realistic Constraints (budget, timeline, legacy dependencies)
  • Apply QUAD Labels as demonstrated
  • Generate Stories using Story Agent patterns
  • This environment can be used for:

  • β€’ QUAD methodology demos
  • β€’ Training sessions
  • β€’ POC implementations
  • β€’ Sales presentations
  • β€’ Documentation examples

  • Part of QUADβ„’ (Quick Unified Agentic Development) Methodology Β© 2025 Suman Addanke / A2 Vibe Creators LLC